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Abstract. Final-state qq̄ interactions give origin to nonzero values of the off-diagonal element ρ1,−1 of the
helicity density matrix of vector mesons produced in e+e− annihilations, as has been confirmed by recent
OPAL data on φ, D∗, and K∗. New predictions are given for ρ1,−1 of several mesons produced at large xE

and small pT – i.e., collinear with the parent jet – in the annihilation of polarized e+ and e−; the results
depend strongly on the elementary dynamics and allow further nontrivial tests of the standard model.

1 Introduction

In a series of papers [1]–[3], it has been pointed out how
the final-state interactions between the q and q̄ produced
in e+e− annihilations – usually neglected, but indeed nec-
essary – might give origin to nonzero values of spin ob-
servables which would otherwise be forced to vanish. The
off-diagonal spin density matrix element ρ1,−1(V ) of vec-
tor mesons may be sizeably different from zero [1,2] be-
cause of a coherent fragmentation process which takes into
account qq̄ interactions; indeed, predictions were given [3]
for several spin-1 particles produced at LEP in two-jet
events, provided that they carry a large fraction xE of the
parent quark energy and have a small intrinsic pT, i.e.,
that they are collinear with the parent jet.

The values of ρ1,−1(V ) are related to the values of the
off-diagonal helicity density matrix element ρ+−;−+(qq̄) of
the qq̄ pair, generated in the e−e+ → qq̄ process [3]:

ρ1,−1(V ) ' [1 − ρ0,0(V )] ρ+−;−+(qq̄) (1)

where the value of the diagonal element ρ0,0(V ) can be
taken from data. The values of ρ+−;−+(qq̄) depend on the
elementary short-distance dynamics and can be computed
in the standard model. Thus, a measurement of ρ1,−1(V )
is a further test of the constituent dynamics and is more
significant than the usual measurement of cross sections in
that it depends on the product of different elementary am-
plitudes rather than on squared moduli. With unpolarized
e+ and e−,

ρ+−;−+(qq̄) =
1

4Nqq̄

∑
λ−,λ+

M+−;λ−λ+
M∗

−+;λ−λ+
, (2)

where the M are the helicity amplitudes for the e−e+ →
qq̄ process, and

4Nqq̄ =
∑

λq,λq̄ ;λ−,λ+

|Mλqλq̄ ;λ−λ+
|2 . (3)

At LEP energy,
√

s = M
Z
, one has [3]

ρ+−;−+(qq̄) ' ρ
Z

+−;−+(qq̄) ' 1
2

(g2
V

− g2
A
)q

(g2
V

+ g2
A
)q

sin2 θ

1 + cos2 θ
·
(4)

where g
V

and g
A

are the standard model coupling con-
stants [reported for convenience in (15)] and θ is the vector
meson production angle in the e−e+ c.m. frame.

At lower energies, where weak interactions can be ne-
glected, one has:

ρ+−;−+(qq̄) ' ρ
γ

+−;−+(qq̄) =
1
2

sin2 θ

1 + cos2 θ
· (5)

Equation (1) is in good agreement with OPAL Collab-
oration data on φ, D∗, and K∗, including the θ depen-
dence induced by (4) [4,5]; however, no sizeable value of
ρ1,−1(V ) for V = ρ, φ, and K∗ was observed by the DEL-
PHI Collaboration [6]. Further tests are thus necessary.
Predictions for ρ1,−1(V ), with V = φ, D∗, or B∗ produced
in NN → V X, γN → V X and `N → `V X processes were
given in [7].

We consider here again the process e+e− → V X, as-
suming all possible polarization states for the initial lep-
tons. This might not be a realistic case – polarized e+e−
beams might not be available in the near future – but,
as we shall see, the results show such a strong interesting
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dependence on the spin elementary dynamics that such a
possibility should not be forgotten when future e+e− col-
liders are planned. Also, this work is the natural expansion
and completion – with all possible cases and theoretical
predictions taken into account – of the study undertaken
in [3].

In the next section, we compute the value of
ρ+−;−+(qq̄) with the most general spin states of e+ and
e−; in Sect. 3, we obtain numerical estimates in several
particular cases, and in Sect. 4, we give some comments
and conclusions.

2 Computation of ρ+−;−+(qq̄)

In the case of polarized initial leptons, (2) changes to:

ρpol
λq,λq̄ ;λ′

q,λ′
q̄
(qq̄) = (6)

1

Npol
qq̄

∑
λ−,λ+,λ′

−,λ′
+

Mλq,λq̄ ;λ−,λ+
ρλ−,λ+;λ′

−,λ′
+

M∗
λ′

q,λ′
q̄ ;λ′

−,λ′
+

with

Npol
qq̄ = (7)∑

λq,λq̄ ;λ−,λ+,λ′
−,λ′

+

Mλq,λq̄ ;λ−,λ+
ρλ−,λ+;λ′

−,λ′
+

M∗
λq,λq̄ ;λ′

−,λ′
+

and where

ρλ−,λ+;λ′
−,λ′

+
(e−e+) = ρλ−,λ′

−(e−) ρλ+,λ′
+
(e+) (8)

is the helicity density matrix of the incoming independent
leptons.

The most general helicity density matrices for the in-
coming e− and e+ are given by

ρ(e−) =
1
2

(
1 + cos α− e−iβ− sinα−
eiβ− sinα− 1 − cos α−

)
(9)

and

ρ(e+) =
1
2

(
1 − cos α+ eiβ+ sinα+

e−iβ+ sinα+ 1 + cos α+

)
(10)

where α− and β− (α+ and β+) are respectively the polar
and azimuthal angle of the e− (e+) spin vectors; we have
chosen xz as the scattering plane with e− (e+) moving
along the positive (negative) direction of z axis.

Insertion of (8)–(10) into (7) and (8), with lepton
masses neglected, yields

ρpol
λq,λq̄ ;λ′

q,λ′
q̄
(qq̄) =

1

4Npol
qq̄

[
(1 + cos α−) (1 + cos α+)

× Mλq,λq̄ ;+,− M∗
λ′

q,λ′
q̄ ;+,−

+ e−i(β−+β+) (sinα− sinα+)
× Mλq,λq̄ ;+,− M∗

λ′
q,λ′

q̄ ;−,+

+ ei(β−+β+) (sinα− sinα+)

× Mλq,λq̄ ;−,+ M∗
λ′

q,λ′
q̄ ;+,−

+ (1 − cos α−) (1 − cos α+)

× Mλq,λq̄ ;−,+ M∗
λ′

q,λ′
q̄ ;−,+

]
(11)

with

4Npol
qq̄ = (1 + cos α−) (1 + cos α+)

× [ |M+−;+−|2 + |M−+;+−|2 ]
+ (1 − cos α−) (1 − cos α+)
× [ |M+−;−+|2 + |M−+;−+|2 ]
+ 2 sin α− sinα+

× Re
[
e−i(β−+β+) (M+−;+− M∗

+−;−+

+ M−+;+− M∗
−+;−+

)]
. (12)

In the last equation, quark masses, compared to their en-
ergies, have been neglected.

The explicit expressions of the relevant e+e− → qq̄
c.m. helicity amplitudes are given by [3]:

M±∓;±∓ = e2(1 + cos θ) [eq − g
Z
(s)(g

V
∓ g

A
)l

×(g
V

∓ g
A
)q] (13)

M±∓;∓± = e2(1 − cos θ) [eq − g
Z
(s)(g

V
± g

A
)l

×(g
V

∓ g
A
)q] (14)

with the usual standard model coupling constants:

gl
V

= −1
2

+ 2 sin2 θ
W

gl
A

= −1
2

gu,c,t
V

=
1
2

− 4
3

sin2 θ
W

gu,c,t
A

=
1
2

(15)

gd,s,b
V

= −1
2

+
2
3

sin2 θ
W

gd,s,b
A

= −1
2

g
Z
(s) =

1
4 sin2 θ

W
cos2 θ

W

s

(s − M2
Z
) + iM

Z
Γ

Z

·

By inserting (13) and (14) into (11), and (12) one ob-
tains:

ρpol
+−;+−(qq̄) =

1

4Npol
qq̄

[
(1 + cos2 θ) F pol

1,q + cos θ F pol
2,q

+ sin2 θ F pol
3,q

]
, (16)

ρpol
+−;−+(qq̄) =

1

4Npol
qq̄

[
(1 + cos2 θ) (F pol

4,q + iF pol
5,q )

+ cos θ (F pol
6,q + iF pol

7,q )

+ sin2 θ (F pol
8,q + iF pol

9,q )
]
, (17)

with

Npol
qq̄ = (1 + cos2 θ) F pol

10,q + cos θ F pol
11,q + sin2 θ F pol

12,q . (18)

The twelve functions F pol
i,q depend on the spin directions

of the incoming leptons:

F pol
1,q = (1 + cos α+) (1 + cos α−)
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×
[
e2
q + |g

Z
|2 (g

V
− g

A
)2l (g

V
− g

A
)2q

− eq 2 (Re g
Z
) (g

V
− g

A
)l (gV

− g
A
)q

]
+ (1 − cos α+) (1 − cos α−)

×
[
e2
q + |g

Z
|2 (g

V
+ g

A
)2l (g

V
− g

A
)2q

− eq 2 (Re g
Z
) (g

V
+ g

A
)l (gV

− g
A
)q

]
F pol

2,q = (1 + cos α+) (1 + cos α−) 2

×
[
e2
q + |g

Z
|2 (g

V
− g

A
)2l (g

V
− g

A
)2q

− eq 2 (Re g
Z
) (g

V
− g

A
)l (gV

− g
A
)q

]
− (1 − cos α+) (1 − cos α−) 2

×
[
e2
q + |g

Z
|2 (g

V
+ g

A
)2l (g

V
− g

A
)2q

− eq 2 (Re g
Z
) (g

V
+ g

A
)l (gV

− g
A
)q

]
F pol

3,q = 2 sin α+ sinα−
[
cos(β+ + β−)

×
(
e2
q + |g

Z
|2 (g2

V
− g2

A
)l (gV

− g
A
)2q

− eq 2 (Re g
Z
) gl

V
(g

V
− g

A
)q

)
+ sin(β+ + β−) eq 2 (Im g

Z
) gl

A
(g

V
− g

A
)q

]
F pol

4,q = 2 sin α+ sinα−
[
cos(β+ + β−)

×[e2
q + |g

Z
|2 (g2

V
− g2

A
)l (g2

V
− g2

A
)q

− eq 2 (Re g
Z
) gl

V
gq

V
]

+ sin(β+ + β−) eq 2 (Im g
Z
) gl

A
gq

V

]
F pol

5,q = 2 sin α+ sinα−
[
cos(β+ + β−) eq 2(Im g

Z
) gl

V
gq

A

+ sin(β+ + β−) eq 2 (Re g
Z
) gl

A
gq

A

]
F pol

6,q = 4 sin α+ sinα−
[

− cos(β+ + β−) eq 2 (Re g
Z
) gl

A
gq

A

+ sin(β+ + β−) eq 2 (Im g
Z
) gl

V
gq

A

]
F pol

7,q = 4 sin α+ sinα−
[
cos(β+ + β−) eq 2 (Im g

Z
) gl

A
gq

V

− sin(β+ + β−)[e2
q + |g

Z
|2 (g2

V
− g2

A
)l (g2

V
− g2

A
)q

−eq 2 (Re g
Z
) gl

V
gq

V
]
]

F pol
8,q = (1 + cos α+) (1 + cos α−)

×
[
e2
q + |g

Z
|2 (g

V
− g

A
)2l (g2

V
− g2

A
)q

− eq 2 (Re g
Z
) (g

V
− g

A
)l g

q
V

]
+ (1 − cos α+) (1 − cos α−)

×
[
e2
q + |g

Z
|2 (g

V
+ g

A
)2l (g2

V
− g2

A
)q

− eq 2 (Re g
Z
) (g

V
+ g

A
)l g

q
V

]
F pol

9,q = (1 + cos α+) (1 + cos α−)

×
[
eq 2 (Im g

Z
) (g

V
− g

A
)l g

q
A

]
+ (1 − cos α+) (1 − cos α−)

×
[
eq 2 (Im g

Z
) (g

V
+ g

A
)l g

q
A

]
F pol

10,q = (1 + cos α+) (1 + cos α−)(1/2)

×
[
e2
q + |g

Z
|2 (g

V
− g

A
)2l (g2

V
+ g2

A
)q

− eq 2 (Re g
Z
) (g

V
− g

A
)l g

q
V

]
+(1 − cos α+) (1 − cos α−)(1/2)

×
[
e2
q + |g

Z
|2 (g

V
+ g

A
)2l (g2

V
+ g2

A
)q

−eq 2 (Re g
Z
) (g

V
+ g

A
)l g

q
V

]
F pol

11,q = (1 + cos α+) (1 + cos α−)

×2
[
eq (Re g

Z
) (g

V
− g

A
)l g

q
A

− |g
Z
|2 (g

V
− g

A
)2l (g

V
g

A
)q

]
− (1 − cos α+) (1 − cos α−)

×2
[
eq (Re g

Z
) (g

V
+ g

A
)l g

q
A

− |g
Z
|2 (g

V
+ g

A
)2l (g

V
g

A
)q

]
F pol

12,q = (sinα+ sinα−)

×
[
cos(β+ + β−) [e2

q − eq 2 (Re g
Z
) gl

V
gq

V

+ |g
Z
|2 (g2

V
− g2

A
)l (g2

V
+ g2

A
)q] + sin(β+ + β−)

×[eq 2 (Im g
Z
) gl

A
gq

V
]
]
. (19)

Equations (17)–(19) give, at lowest perturbative or-
der in the standard model, the most general expression of
ρpol
+−;−+(qq̄) for a qq̄ pair obtained in the annihilation pro-

cess of polarized leptons, e−e+ → qq̄; both weak and elec-
tromagnetic interactions (γ and Z0 exchanges) are taken
into account.

3 Numerical values of ρ+−;−+(qq̄)

Let us now consider different polarization states of e− and
e+. We choose as possible spin directions the 3 coordinate
axes, x̂, ŷ, ẑ, with spin component ±1/2 along these direc-
tions. The corresponding values of (α, β) in (9) and (10)
are as follows:

+x̂ = (π/2, 0) + ŷ = (π/2, π/2) + ẑ = (0, 0)
−x̂ = (π/2, π) − ŷ = (π/2, 3π/2) − ẑ = (π, π) (20)

We then have a total of 6 × 6 = 36 possible initial
spin states. Many of them will lead to the same value of
ρpol
+−;−+(qq̄), and it is convenient to group them into the

following nine cases (notice that Case 3 is just listed for
completeness, but it gives identically null results due to
helicity conservation in the e−e+Z0 and e−e+γ vertices):
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Case 1:

{P (e−,+ẑ) , P (e+,+ẑ)};

Case 2:

{P (e−,+ẑ) , P (e+,+x̂)}, {P (e−,+ẑ) , P (e+,−x̂)},
{P (e−,+ẑ) , P (e+,+ŷ)} , {P (e−,+ẑ) , P (e+,−ŷ)},
{P (e−,+x̂) , P (e+,+ẑ)}, {P (e−,−x̂) , P (e+,+ẑ)},
{P (e−,+ŷ) , P (e+,+ẑ)}, {P (e−,−ŷ) , P (e+,+ẑ)};

Case 3:

{P (e−,+ẑ) , P (e+,−ẑ)}, {P (e−,−ẑ) , P (e+,+ẑ)};

Case 4:

{P (e−,−ẑ) , P (e+,−ẑ)};

Case 5:

{P (e−,+x̂) , P (e+,+x̂)}, {P (e−,−x̂) , P (e+,−x̂)},
{P (e−,+ŷ) , P (e+,−ŷ)}, {P (e−,−ŷ) , P (e+,+ŷ)};

Case 6:

{P (e−,+x̂) , P (e+,−x̂)}, {P (e−,−x̂) , P (e+,+x̂)},
{P (e−,+ŷ) , P (e+,+ŷ)}, {P (e−,−ŷ) , P (e+,−ŷ)};

Case 7:

{P (e−,+x̂) , P (e+,+ŷ)}, {P (e−,+ŷ) , P (e+,+x̂)},
{P (e−,−x̂) , P (e+,−ŷ)}, {P (e−,−ŷ) , P (e+,−x̂)};

Case 8:

{P (e−,+x̂) , P (e+,−ŷ)}, {P (e−,−ŷ) , P (e+,+x̂)},
{P (e−,−x̂) , P (e+,+ŷ)}, {P (e−,+ŷ) , P (e+,−x̂)};

Case 9:

{P (e−,−ẑ) , P (e+,+x̂)}, {P (e−,−ẑ) , P (e+,+ŷ)},
{P (e−,−ẑ) , P (e+,−x̂)}, {P (e−,−ẑ) , P (e+,−ŷ)},
{P (e−,+x̂) , P (e+,−ẑ)}, {P (e−,−x̂) , P (e+,−ẑ)},
{P (e−,+ŷ) , P (e+,−ẑ)}, {P (e−,−ŷ) , P (e+,−ẑ)}.

The corresponding expressions of the functions F pol
i,q

are given by:

Case 1:

F pol,C1
1,q = 4

[
e2
q + |g

Z
|2 (g

V
− g

A
)2l (g

V
− g

A
)2q

− eq 2 (Re g
Z
) (g

V
− g

A
)l (gV

− g
A
)q

]
F pol,C1

2,q = 2F pol,C1
1,q

F pol,C1
3,q = F pol,C1

4,q = F pol,C1
5,q = F pol,C1

6,q = F pol,C1
7,q =

F pol,C1
12,q = 0

F pol,C1
8,q = 4

[
e2
q + |g

Z
|2 (g

V
− g

A
)2l (g2

V
− g2

A
)q

− eq 2 (Re g
Z
) (g

V
− g

A
)l g

q
V

]
F pol,C1

9,q = eq 8 (Im g
Z
) (g

V
− g

A
)l g

q
A

F pol,C1
10,q = 2

[
e2
q + |g

Z
|2 (g

V
− g

A
)2l (g2

V
+ g2

A
)q

− eq 2 (Re g
Z
) (g

V
− g

A
)l g

q
V

]
F pol,C1

11,q = 8
[
eq (Re g

Z
) (g

V
− g

A
)l g

q
A

− |g
Z
|2 (g

V
− g

A
)2l (g

V
g

A
)q

]
; (21)

Case 2:

F pol,C2
i,q = (1/2) F pol,C1

i,q (i = 1–12) ; (22)

Case 3:

F pol,C3
i,q = 0 (i = 1–12) ; (23)

Case 4:

F pol,C4
1,q = 4

[
e2
q + |g

Z
|2 (g

V
+ g

A
)2l (g

V
− g

A
)2q

− eq 2 (Re g
Z
) (g

V
+ g

A
)l (gV

− g
A
)q

]
F pol,C4

2,q = −8
[
e2
q + |g

Z
|2 (g

V
+ g

A
)2l (g

V
− g

A
)2q

− eq 2 (Re g
Z
) (g

V
+ g

A
)l (gV

− g
A
)q

]
F pol,C4

3,q = F pol,C4
4,q = F pol,C4

5,q = F pol,C4
6,q = F pol,C4

7,q =
F pol,C4

12,q = 0

F pol,C4
8,q = 4

[
e2
q + |g

Z
|2 (g

V
+ g

A
)2l (g2

V
− g2

A
)q

− eq 2 (Re g
Z
) (g

V
+ g

A
)l g

q
V

]
F pol,C4

9,q = eq 8 (Im g
Z
) (g

V
+ g

A
)l g

q
A

F pol,C4
10,q = 2

[
e2
q + |g

Z
|2 (g

V
+ g

A
)2l (g2

V
+ g2

A
)q

− eq 2 (Re g
Z
) (g

V
+ g

A
)l g

q
V

]
F pol,C4

11,q = 8
[

− eq (Re g
Z
) (g

V
+ g

A
)l g

q
A

+ |g
Z
|2 (g

V
+ g

A
)2l (g

V
g

A
)q

]
; (24)

Case 5:

F pol,C5
1,q = 2

[
e2
q + |g

Z
|2 (g2

V
+ g2

A
)l (gV

− g
A
)2q

− eq 2 (Re g
Z
) gl

V
(g

V
− g

A
)q

]
F pol,C5

2,q = 8
[

− |g
Z
|2 (g

V
g

A
)l (gV

− g
A
)2q

+ eq (Re g
Z
) gl

A
(g

V
− g

A
)q

]
F pol,C5

3,q = 2
[
e2
q + |g

Z
|2 (g2

V
− g2

A
)l (gV

− g
A
)2q

− eq 2 (Re g
Z
) gl

V
(g

V
− g

A
)q

]
F pol,C5

4,q = 2
[
e2
q + |g

Z
|2 (g2

V
− g2

A
)l (g2

V
− g2

A
)q

− eq 2 (Re g
Z
) gl

V
gq

V

]
F pol,C5

5,q = eq 4 (Im g
Z
) gl

V
gq

A

F pol,C5
6,q = −eq 8 (Re g

Z
) gl

A
gq

A



M. Anselmino et al.: Off-diagonal helicity density matrix elements 533

F pol,C5
7,q = eq 8(Im g

Z
) gl

A
gq

V

F pol,C5
8,q = 2

[
e2
q + |g

Z
|2 (g2

V
+ g2

A
)l (g2

V
− g2

A
)q

− eq 2 (Re g
Z
) gl

V
gq

V

]
F pol,C5

9,q = eq 4 (Im g
Z
) gl

V
gq

A

F pol,C5
10,q = e2

q + |g
Z
|2 (g2

V
+ g2

A
)l (g2

V
+ g2

A
)q

− eq 2 (Re g
Z
) gl

V
gq

V

F pol,C5
11,q = 4

[
− eq(Re g

Z
) gl

A
gq

A
+ |g

Z
|2 2(g

V
g

A
)l (gV

g
A
)q

]
F pol,C5

12,q = e2
q + |g

Z
|2 (g2

V
− g2

A
)l (g2

V
+ g2

A
)q

− eq 2 (Re g
Z
) gl

V
gq

V
; (25)

Case 6:

F pol,C6
1,q = 2

[
e2
q + |g

Z
|2 (g2

V
+ g2

A
)l (gV

− g
A
)2q

− eq 2 (Re g
Z
) gl

V
(g

V
− g

A
)q

]
F pol,C6

2,q = 8
[

− |g
Z
|2 (g

V
g

A
)l (gV

− g
A
)2q

+ eq (Re g
Z
) gl

A
(g

V
− g

A
)q

]
F pol,C6

3,q = −2
[
e2
q + |g

Z
|2 (g2

V
− g2

A
)l (gV

− g
A
)2q

− eq 2 (Re g
Z
) gl

V
(g

V
− g

A
)q

]
F pol,C6

4,q = −2
[
e2
q + |g

Z
|2 (g2

V
− g2

A
)l (g2

V
− g2

A
)q

− eq 2 (Re g
Z
) gl

V
gq

V

]
F pol,C6

5,q = −eq 4 (Im g
Z
) gl

V
gq

A

F pol,C6
6,q = eq 8 (Re g

Z
) gl

A
gq

A

F pol,C6
7,q = −eq 8 (Im g

Z
) gl

A
gq

V

F pol,C6
8,q = 2

[
e2
q + |g

Z
|2 (g2

V
+ g2

A
)l (g2

V
− g2

A
)q

− eq 2 (Re g
Z
) gl

V
gq

V

]
F pol,C6

9,q = eq 4 (Im g
Z
) gl

V
gq

A

F pol,C6
10,q = e2

q + |g
Z
|2 (g2

V
+ g2

A
)l (g2

V
+ g2

A
)q

− eq 2 (Re g
Z
) gl

V
gq

V

F pol,C6
11,q = 4

[
− eq (Re g

Z
) gl

A
gq

A
+ |g

Z
|2 2(g

V
g

A
)l (gV

g
A
)q

]
F pol,C6

12,q = −e2
q − |g

Z
|2 (g2

V
− g2

A
)l (g2

V
+ g2

A
)q

+ eq 2 (Re g
Z
) gl

V
gq

V
; (26)

Case 7:

F pol,C7
1,q = 2

[
e2
q + |g

Z
|2 (g2

V
+ g2

A
)l (gV

− g
A
)2q

− eq 2 (Re g
Z
) gl

V
(g

V
− g

A
)q

]
F pol,C7

2,q = 4
[

− |g
Z
|2 2(g

V
g

A
)l (gV

− g
A
)2q

+ eq 2 (Re g
Z
) gl

A
(g

V
− g

A
)q

]
F pol,C7

3,q = eq 4 (Im g
Z
) gl

A
(g

V
− g

A
)q

F pol,C7
4,q = eq 4 (Im g

Z
) gl

A
gq

V

F pol,C7
5,q = eq 4 (Re g

Z
) gl

A
gq

A

F pol,C7
6,q = eq 8 (Im g

Z
) gl

V
gq

A

F pol,C7
7,q = −4

[
e2
q + |g

Z
|2 (g2

V
− g2

A
)l (g2

V
− g2

A
)q

− eq 2 (Re g
Z
) gl

V
gq

V

]
F pol,C7

8,q = 2
[
e2
q + |g

Z
|2 (g2

V
+ g2

A
)l (g2

V
− g2

A
)q

− eq 2 (Re g
Z
) gl

V
gq

V

]
F pol,C7

9,q = eq 4 (Im g
Z
) gl

V
gq

A

F pol,C7
10,q = e2

q + |g
Z
|2 (g2

V
+ g2

A
)l (g2

V
+ g2

A
)q

− eq 2 (Re g
Z
) gl

V
gq

V

F pol,C7
11,q = 4

[
− eq (Re g

Z
) gl

A
gq

A
+ |g

Z
|2 2 (g

V
g

A
)l (gV

g
A
)q

]
F pol,C7

12,q = eq 2 (Im g
Z
) gl

A
gq

V
; (27)

Case 8:

F pol,C8
1,q = 2

[
e2
q + |g

Z
|2 (g2

V
+ g2

A
)l (gV

− g
A
)2q

− eq 2 (Re g
Z
) gl

V
(g

V
− g

A
)q

]
F pol,C8

2,q = 8
[

− |g
Z
|2 (g

V
g

A
)l (gV

− g
A
)2q

+ eq (Re g
Z
) gl

A
(g

V
− g

A
)q

]
F pol,C8

3,q = −eq 4 (Im g
Z
) gl

A
(g

V
− g

A
)q

F pol,C8
4,q = −eq 4 (Im g

Z
) gl

A
gq

V

F pol,C8
5,q = −eq 4 (Re g

Z
) gl

A
gq

A

F pol,C8
6,q = −eq 8 (Im g

Z
) gl

V
gq

A

F pol,C8
7,q = 4

[
e2
q + |g

Z
|2 (g2

V
− g2

A
)l (g2

V
− g2

A
)q

− eq 2 (Re g
Z
) gl

V
gq

V

]
F pol,C8

8,q = 2
[
e2
q + |g

Z
|2 (g2

V
+ g2

A
)l (g2

V
− g2

A
)q

− eq 2 (Re g
Z
) gl

V
gq

V

]
F pol,C8

9,q = eq 4 (Im g
Z
) gl

V
gq

A

F pol,C8
10,q = e2

q + |g
Z
|2 (g2

V
+ g2

A
)l (g2

V
+ g2

A
)q

− eq 2 (Re g
Z
) gl

V
gq

V

F pol,C8
11,q = 4

[
− eq (Re g

Z
) gl

A
gq

A
+ |g

Z
|2 2(g

V
g

A
)l (gV

g
A
)q

]
F pol,C8

12,q = −eq 2 (Im g
Z
) gl

A
gq

V
; (28)

Case 9:

F pol,C9
i,q = (1/2) F pol,C4

i,q (i = 1–12) . (29)

We can now compute ρpol
+−;−+(qq̄) for any initial-lepton

spin state, and at any energy, by using (21)–(29) together
with (15) in (17) and (18). We do this first at the Z0 pole,
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√
s = M

Z
, where

g
Z
(s = M2

Z
) = −i

M
Z
/Γ

Z

4 sin2 θ
W

cos2 θ
W

· (30)

Taking [8] sin2 θ
W

= 0.231, M
Z

= 91.187 GeV/c2, and
Γ

Z
= 2.490 GeV yields, for u-type quarks,

ρpol,C1,C2
+−;−+ (uū;

√
s = M

Z
)

= −0.369 (1 + i 0.132)
sin2 θ

1 + cos2 θ − 1.335 cos θ

ρpol,C4,C9
+−;−+ (uū;

√
s = M

Z
)

= −0.370 (1 − i 0.113)
sin2 θ

1 + cos2 θ + 1.336 cos θ

Re [ρpol,C5
+−;−+(uū;

√
s = M

Z
)]

= −0.371
0.003 − cos2 θ

0.008 + cos2 θ + 0.102 cos θ

Im [ρpol,C5
+−;−+(uū;

√
s = M

Z
)]

= +0.371
0.009 + 0.047 cos θ

0.008 + cos2 θ + 0.102 cos θ

Re [ρpol,C6
+−;−+(uū;

√
s = M

Z
)]

= −0.371
1 − 0.003 cos2 θ

1 + 0.008 cos2 θ + 0.102 cos θ

Im [ρpol,C6
+−;−+(uū;

√
s = M

Z
)]

= −0.371
0.009 cos2 θ + 0.047 cos θ

1 + 0.008 cos2 θ + 0.102 cos θ

Re [ρpol,C7
+−;−+(uū;

√
s = M

Z
)]

= −0.374
0.911 − cos2 θ − 0.018 cos θ

1 + 0.934 cos2 θ + 0.195 cos θ

Im [ρpol,C7
+−;−+(uū;

√
s = M

Z
)]

= +0.374
0.009 sin2 θ − 1.901 cos θ

1 + 0.934 cos2 θ + 0.195 cos θ

Re [ρpol,C8
+−;−+(uū;

√
s = M

Z
)]

= −0.374
1 − 0.911 cos2 θ + 0.018 cos θ

0.934 + cos2 θ + 0.195 cos θ

Im [ρpol,C8
+−;−+(uū;

√
s = M

Z
)]

= +0.374
0.009 sin2 θ + 1.901 cos θ

0.934 + cos2 θ + 0.195 cos θ
(31)

and for d-type quarks,

ρpol,C1,C2
+−;−+ (dd̄;

√
s = M

Z
)

= −0.176 (1 + i 0.108)
sin2 θ

1 + cos2 θ − 1.871 cos θ

ρpol,C4,C9
+−;−+ (dd̄;

√
s = M

Z
)

= −0.176 (1 − i 0.092)
sin2 θ

1 + cos2 θ + 1.871 cos θ

Re [ρpol,C5
+−;−+(dd̄;

√
s = M

Z
)]

= −0.176
0.004 − cos2 θ

0.006 + cos2 θ + 0.142 cos θ

Im [ρpol,C5
+−;−+(dd̄;

√
s = M

Z
)]

= +0.176
0.008 + 0.069 cos θ

0.006 + cos2 θ + 0.142 cos θ

Re [ρpol,C6
+−;−+(dd̄;

√
s = M

Z
)]

= −0.176
1 − 0.004 cos2 θ

1 + 0.006 cos2 θ + 0.142 cos θ

Im [ρpol,C6
+−;−+(dd̄;

√
s = M

Z
)]

= −0.176
0.008 cos2 θ + 0.069 cos θ

1 + 0.006 cos2 θ + 0.142 cos θ

Re [ρpol,C7
+−;−+(dd̄;

√
s = M

Z
)]

= −0.184
0.872 − cos2 θ − 0.014 cos θ

1 + 0.953 cos2 θ + 0.276 cos θ

Im [ρpol,C7
+−;−+(dd̄;

√
s = M

Z
)]

= +0.184
0.007 sin2 θ − 1.855 cos θ

1 + 0.953 cos2 θ + 0.276 cos θ

Re [ρpol,C8
+−;−+(dd̄;

√
s = M

Z
)]

= −0.184
1 − 0.872 cos2 θ + 0.014 cos θ

0.953 + cos2 θ + 0.276 cos θ

Im [ρpol,C8
+−;−+(dd̄;

√
s = M

Z
)]

= +0.184
0.007 sin2 θ + 1.855 cos θ

0.953 + cos2 θ + 0.276 cos θ
(32)

At lower energies, at which one can neglect all weak
interactions [that is, if g

Z
= 0 in (21)–(29) and quark

masses are taken into account] one obtains for any flavor:

ρpol,C1,C2,C4,C9
+−;−+ (qq̄;

√
s � M

Z
) =

1
2

sin2 θ

1 + cos2 θ + ε2 sin2 θ

ρpol,C5
+−;−+(qq̄;

√
s � M

Z
) =

1
2

ρpol,C6
+−;−+(qq̄;

√
s � M

Z
) = −1

2
cos2 θ

cos2 θ + ε2 sin2 θ

Re [ρpol,C7,C8
+−;−+ (qq̄;

√
s � M

Z
)] =

1
2

sin2 θ

1 + cos2 θ + ε2 sin2 θ

Im [ρpol,C7
+−;−+(qq̄;

√
s � M

Z
)] =

− cos θ

1 + cos2 θ + ε2 sin2 θ

Im [ρpol,C8
+−;−+(qq̄;

√
s � M

Z
)] =

cos θ

1 + cos2 θ + ε2 sin2 θ
,

(33)
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Fig. 1. Plot of Re[ρpol
+−;−+(uū;

√
s = MZ )] as a function of

θ (the production angle of the vector meson in the e−e+

c.m. frame) for cases: C5, C6 (both leptons transversely po-
larized with spins either parallel or antiparallel); C1, C4 (lep-
tons with opposite helicities); C2, C9 (one lepton longitudi-
nally polarized, the other transversely polarized). The value of
ρ+−;−+(uū;

√
s = MZ ) for unpolarized leptons is also shown,

for comparison. In all other cases, one obtains results similar
to the unpolarized case

Fig. 2. The same as in Fig. 1, for d-type quarks

where ε = 2mq/
√

s, which, for heavy flavors, might not be
negligible at

√
s � M

Z
.

Insertion of (31) and (32) or (33) into (1) allows one
to make predictions for the relation between ρ1,−1(V ) and
ρ0,0(V ), both of which are measurable quantities. Equa-
tion (1) holds for vector mesons that have a large energy
fraction xE and are collinear with the parent jet; q is the
quark flavor which contributes dominantly to the final vec-
tor meson production (e.g., c in D∗); an average should
be taken if more than one flavor contributes [3].

Notice that we expect [3] ρ0,0(V ) to be independent of
the production angle θ, so that the sign of ρ1,−1(V ) and
its θ dependence are entirely given by the elementary dy-
namics, via ρ+−;−+(qq̄); for unpolarized e+ and e−, such
dynamics are given by (4) or (5), and for polarized ones,
by either (31), (32) or (33). We turn now to a discussion

Fig. 3. Plot of Im[ρpol
+−;−+(uū;

√
s = MZ )] as a function of

θ (the production angle of the vector meson in the e−e+

c.m. frame) for cases: C5 (both leptons transversely polarized
with spins either parallel or antiparallel); C7, C8 (both lep-
tons transversely polarized, in different directions). In all other
cases, including the unpolarized one, Im[ρpol

+−;−+(uū;
√

s =
MZ )] ' 0

Fig. 4. The same as in Fig. 3, for d-type quarks

of these equations and a comparison with the unpolarized
case.

4 Comments and conclusions

We show our numerical results for ρpol
+−;−+(qq̄) in Figs. 1–

6. We give results only for those cases which strongly
differ from the unpolarized case and have such peculiar
features that a measurement of ρ1,−1(V ) in agreement
with them would be an unquestionable test of our ap-
proach. In Figs. 1–4, we consider the LEP high-energy
case,

√
s = M

Z
, and in Figs. 5,6, the lower-energy case,√

s � M
Z
.

In Fig. 1, we plot as functions of θ (the V production
angle in the e−e+ c.m. frame) the real part of ρpol

+−;−+(uū)
at LEP energy for cases C5, C6, C1,C2, and C4,C9. The
value of ρ+−;−+(uū) for unpolarized leptons is reported
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Fig. 5. Plot of Re[ρpol
+−;−+(qq̄;

√
s � MZ )] as a function of

θ (the production angle of the vector meson in the e−e+

c.m. frame) for cases C5 and C6 (both leptons transversely
polarized with spins either parallel or antiparallel). All other
cases give the same result as that given by unpolarized leptons,
which is shown for comparison. Quark masses have been taken
into account, with ε = 2mq/

√
s = 0.1

Fig. 6. Plot of Im[ρpol
+−;−+(qq̄;

√
s � MZ )] for cases C7

and C8 (both leptons transversely polarized, in different di-
rections). In all other cases, including the unpolarized one,
Im[ρpol

+−;−+(qq̄;
√

s � MZ )] = 0. Again, ε = 0.1

also, for comparison. In Fig. 2 we do the same for d-type
quarks.

In Fig. 3, we plot the imaginary part of ρpol
+−;−+(uū) at

LEP energy for cases C5, C7, and C8. In all other cases,
including the unpolarized one, such an imaginary part is
much smaller and should lead to a measurement of Im
ρ1,−1(V ) ' 0. The same is done in Fig. 4 for d, s, and b
quarks.

In Fig. 5, we plot the real part of ρpol
+−;−+(qq̄;

√
s

� M
Z
), taking into account only electromagnetic inter-

actions for cases C5 and C6. All other cases give the same
result as that for unpolarized leptons, a result which is
reported for comparison. We take quark masses into ac-
count, setting ε = 2mq/

√
s = 0.1.

In Fig. 6, we plot the imaginary part of ρpol
+−;−+(qq̄;

√
s

� M
Z
), taking into account only electromagnetic interac-

tions (and quark masses, ε = 0.1) for cases C7 and C8. In
all other cases, including the unpolarized one, the imagi-
nary part is zero.

Figures 1–6 show beyond any possible doubt how the
elementary dynamics might lead to very different values
of ρ1,−1(V ), according to the different spin states of the
initial e+ and e−. A measurement in agreement with our
predictions would confirm in a definite way the necessity
of coherent effects in the quark fragmentation and prove
all subtleties of the standard model dynamics.

Let us further comment on the most typical cases. The
possible spin configurations and the definitions of the vari-
ous cases are listed at the beginning of Sect. 3. Concerning
the real parts at LEP energy – Figs. 1 and 2 – case C5
presents the most striking features, both in sign and θ
dependence, and shows a drastic difference from the un-
polarized case; also, C6 has a peculiar, almost constant, θ
dependence which should be easily detectable. These two
cases correspond to e+ and e− transversely polarized in
the same direction, with either parallel or opposite spins.
Cases C1,C2 and C4,C9 also deviate greatly from the un-
polarized case, in particular for charge -1/3 quarks: C1
and C4 correspond to initial leptons with opposite helici-
ties and C2, C9 to spin configurations in which one of the
leptons is longitudinally polarized and the other is trans-
versely polarized.

Cases C7 and C8, leptons transversely polarized in dif-
ferent directions, lead to results similar to those for unpo-
larized leptons for the real part of ρpol

+−;−+(qq̄); however,
in contrast to the unpolarized case, they give large val-
ues, strongly varying with θ (see Figs. 3 and 4) for Im
ρpol
+−;−+(qq̄); this makes them very interesting. Also, C5

exhibits a peculiar θ dependence in Im ρpol
+−;−+(qq̄).

At lower energy, when only electromagnetic interac-
tions contribute, cases C5 and C6 are simple and very
interesting (see Fig. 5) for the real parts of ρpol

+−;−+(qq̄);
cases C7 and C8 are unique providers of sizeable imagi-
nary parts of ρpol

+−;−+(qq̄), Fig. 6.
We have thus completed the study of the off-diagonal

helicity density matrix element ρ1,−1(V ) of vector mesons
produced from e+e− annihilations into two jets, selecting
vector mesons with a large energy fraction (say xE ∼> 0.5)
and small transverse momentum (pT/(xE

√
s) � 1) in-

side one of the jets. The idea was suggested in [1] and
[2], and the first numerical predictions, given in [3], have
been confirmed by some experimental data [4,5]. We have
considered here the most general case of polarized e+ and
e−; we have given numerical results both at LEP energy,√

s = MZ , and for
√

s � M
Z
, but our formulas, (17)–

(19) and (21)–(29), are valid at any energy and take into
account both electromagnetic and weak interactions.

At the moment, there is no operating e+e− collider
with polarized beams; however, future generations of lin-
ear colliders are being planned, and our study may indi-
cate very good reasons to seriously consider polarization
options. Our results have many evident and unambigu-



M. Anselmino et al.: Off-diagonal helicity density matrix elements 537

ous features that cannot be missed by measurements of
precision similar to the ones already performed in the un-
polarized case [4]–[6], provided that events are carefully
selected. The measurement of a sizeable ρ1,−1, with its
sign, yields immediate valuable and relevant information,
allowing direct tests both of the hadronization mechanism
and the standard model dynamics.
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